AI背後的暗知識: 機器如何學習、認知與改造我們的未來世界 | 誠品線上

AI背後的暗知識: 機器如何學習、認知與改造我們的未來世界

作者 王維嘉
出版社 大雁文化事業股份有限公司
商品描述 AI背後的暗知識: 機器如何學習、認知與改造我們的未來世界:沒人能逃離人工智慧+機器學習的巨大力量:今天的機器已不斷探索出那些隱藏在海量資訊中的相關性,以及萬事萬物

內容簡介

內容簡介 沒人能逃離人工智慧+機器學習的巨大力量: 今天的機器已不斷探索出那些隱藏在海量資訊中的相關性,以及萬事萬物間的隱蔽關係。 這些人類既無法感受,也無法描述與表達的「暗知識」,將徹底重塑世界! │思想學人 金觀濤│ 專文序 │創新工場董事長 李開復│ 薦讀 深刻理解AI的本質,就能對未來更有方向感 人工智慧很可能導致一場人類社會舊秩序的永久性改變,而這一切或許會比所有人想像的更快發生。 如果你留意最近幾年科技的發展,你會發現,到處都暗示著我們對於生存的認知將被下一階段的發展而徹底改變。 在這本由一位人工智慧參與者/矽谷風投家親撰、題旨宏大卻又簡練解釋了當前科技進程的書中指出,人類或許永遠能自知「所知有限」,但AI與機器學習的出現,則讓我們進入了一個全新的未來領域。作者主張: 「我們可以預見一幅未來世界的知識圖譜:所有的知識分為兩大類界限分明的知識:人類知識和機器知識。人類的知識如果不可陳述則不可記錄和傳播。但機器發掘出來的知識即使無法陳述和理解也可以記錄並能在機器間傳播。這些『暗知識』的表現方式就是一堆看似隨機的數位,如一個神經網路的參數集。這些暗知識的傳播方式就是通過網路以光速傳給其他同類的機器。」 「暗知識給我們的震撼才剛剛開始。從2012 年開始的短短幾年之內,機器已經創造了下面這些「神蹟」:對複雜病因的判斷,準確性超過醫生;可以唯妙唯肖地模仿大師作畫、作曲,甚至進行全新的創作,讓人類真假難辨;機器飛行員和人類飛行員模擬空戰,百戰百勝。……人類將進入一個知識大航海時代,我們將每天發現新的大陸和無數金銀財寶。」 過去人們總把人工智慧(AI)當成科幻電影中才會出現的情景,可近年來不斷有人嚴肅的討論這個問題,同時也讓我們感到困惑,由於我們總把人工智慧跟虛構的電影情節連想在一起,也可能是人工智慧可以用來的描述事物太多了,從電子計算機、自動駕駛車到智慧醫療,它已經存在於我們生活中了,可是它到底是什麼? 這本書就將告訴你目前所謂的人工智慧是什麼?AI背後許多聽來極度專業又帶有資訊工程最前瞻性的工具及技術,如機器學習/卷積網路/深度學習等,到底能不能用簡單方式說明白? 本書也是一本寫給一般人及非資訊科學專業人士得以理解AI全局的定義性讀物,作者師從人工智慧的學術大師伯納德.威羅,並企圖以知識的概念──「內隱知識」為比喻出發,帶領讀者了解目前AI正在攻堅的方向,這些人類過去僅能靠想像存在的「聰明機器」是如何學會了人類世界過去無法有效解決的治理需求,它們的背後有何「暗知識」使得機器得以靠傳感器、物聯網累積的大量資訊及新的機器學習工具做出比人類更卓越、有如神蹟般的表現? 看完本書,你將了解:AlphaGo為何得以戰勝人類最傑出的圍棋棋士,而且也將在某些事物上更長期的占據「人機對奕」的優勢。本書同時也要解答: ※ AI應用的「暗知識」會對經濟與社會造成哪些直接衝擊? ※ 機器學習如何從資料中挖掘暗知識? ※ 機器認知將顛覆什麼行業,不同行業裡又有哪些新的投資機會和陷阱? ※ 神經網路的基本工作原理與當前最接近商業應用的形態 ※ AI對哪些行業的衝擊已經或即將發生?哪些行業的AI應用則在目前看不到「取代性」的可能? ※ AI對人類管理的城市與社會將顛覆性的改變有哪些? ※ ……以及最重要的,你我對這個「許多事務都將由機器治理接管」的時代,該如何因應與準備?

各界推薦

各界推薦 │思想學人 金觀濤│ 專文序 │創新工場董事長 李開復│ 薦讀 〈特別推薦〉 人工智慧鼻祖之一、美國國家工程院院士、史丹佛大學教授 伯納德.威德羅(Bernard Widrow): 我非常高興推薦這本書。這本書對機器學習的發明帶來的下一場工業革命進行了詳盡的分析。我希望這個技術將被用來使人類的生活更美好、更和平,並不再有戰爭。 創新工場董事長及執行長 李開復: 人們時常好奇,人工智慧時代究竟會是什麼樣子?在我看來,人工智慧帶來的不僅是一次技術層面的革新,還將成為下一次商業與工業革命的核心驅動力,極有可能成為人類社會全新發現、變革、融合、發展的開端。那麼人工智慧技術的潛能幾許,背後發展的來龍去脈如何,未來哪些產業將站在風口浪頭,哪些將被徹底顛覆,又會對我們每個人的工作與生活帶來什麼影響?關於這些問題,你都可以在這本書中找到答案。 羅輯思維/得到APP創辦人 羅振宇: 現代社會的大挑戰一直都是:我們怎麼和強大的陌生人竭誠合作?怎麼利用我們無法理解的知識?王維嘉老師這本書提醒我們,這兩個挑戰正在變得愈加嚴峻。

作者介紹

作者介紹 王維嘉美國史丹佛大學博士,矽谷風險投資公司CEG Ventures的創始合夥人,曾於史丹佛大學師從人工智慧鼻祖之一、美國國家工程院院士伯納德.威德羅(Bernard Widrow)教授。他在矽谷學習、工作、創業、投資超過30年,擁有十幾項美國基礎專利,開發了世界上第一台手持互聯網終端機器,是全球移動互聯網的佈道者和踐行者。目前仍於矽谷專注投資人工智慧,每年調查研究及訪問全球上千家高科技創業公司,大學和研究機構。曾受邀在鳳凰衛視、中國大陸證監會、深圳市政府等就人工智慧進行主題演講,反應熱烈。

產品目錄

產品目錄 導讀 一場沉默的改變正在發生 推薦序 「暗知識」和現代社會 寄語 01 橫空出世—暗知識的發現 · 驕傲的人類 · 天才的哽咽 · 機器發現了人類無法理解的知識 · 理性主義和經驗主義之爭 · 知識的生物學基礎—神經元連接 · 可表達的「明知識」 · 只可意會的「默知識」 · 既不可感受也不能表達的「暗知識」 02 榨取數據—機器能學會的知識 · 機器學習明知識 · 類推學派—機器學習默知識 · 機器發現暗知識 03 神經網路—萃取隱蔽相關性 · 從感知器到多層神經網路 · 神經網路模型:滿是旋鈕的黑盒子 · 霧裡下山:訓練機器模型 · Alpha Go 的「上帝視角」 · 局部最優:沒到山底怎麼辦 · 深度學習—化繁為簡 · 化整為零的卷積神經網路 · 處理序列資訊的迴圈神經網路 · AlphaGo 與強化學習 · 神經網路悖論 · 神經網路五大研究前沿 · 深度學習的局限性 04 逐鹿矽谷—AI 產業爭霸戰 · 最新技術巨浪 · AI突破三要素 · 金字塔形的產業結構 · 產業的皇冠:演算法 · 技術制高點:晶 · 生態大戰—程式設計框架的使用和選擇 · 開源社區與AI 生態 · 亂世梟雄 · 大衛和哥利亞 · AI的技術推動力 · AI與互聯網的三個區別 · 05 颶風襲來—將被顛覆的行業 · 自動駕駛顛覆移動—10萬億美元的產業 · 醫療與健康—世界上最有經驗的醫生 · 智慧金融將導致一大批白領、金領失業 · 智能時代萬物皆媒,人機協作時代已經來臨 · 智慧城市—「上帝視角」的城市管理 · 重複體力勞動者將被機器人全面替代 · 打通巴別塔—黑天鵝殺手級應用 · 全方位衝擊 06 暗知識神蹟—機器能否超越人類 · 基於深度學習的AI本質 · 科研加速 · 唐詩高手 · 真假梵谷 · 下一場空戰 · 群體學習和光速分享 · 人類哪裡比機器強 · 人機融合 07 「神人」與「閒人」—AI 時代的社會與倫理 · 誰先失業 · 孩子該學什麼 · AI時代的新工種 · 新分配制度:無條件收入還是無條件培訓 · 貧富懸殊解決之道:民間公益 · 權力再分配 · 是否該信任機器的決定 · 數據如何共享 · 自尊的來源 · 機器會產生自我意識嗎 結語 人類該怎麼辦 致謝 附錄1:一個經典的5 層神經網路LeNet-5 附錄2:迴圈神經網路RNN 和長- 短時記憶網路LSTM 附錄3:CPU、GPU 和TPU 附錄4:機器學習的主要程式設計框架 參考文獻

商品規格

書名 / AI背後的暗知識: 機器如何學習、認知與改造我們的未來世界
作者 / 王維嘉
簡介 / AI背後的暗知識: 機器如何學習、認知與改造我們的未來世界:沒人能逃離人工智慧+機器學習的巨大力量:今天的機器已不斷探索出那些隱藏在海量資訊中的相關性,以及萬事萬物
出版社 / 大雁文化事業股份有限公司
ISBN13 / 9789579689489
ISBN10 / 9579689482
EAN / 9789579689489
誠品26碼 / 2681855096004
頁數 / 360
注音版 /
裝訂 / P:平裝
語言 / 1:中文 繁體
尺寸 / 20.9X14.8CM
級別 / N:無

最佳賣點

最佳賣點 : 深刻理解AI的本質,就能對未來更有方向感
人工智慧很可能導致一場人類社會舊秩序的永久性改變,而這一切或許會比所有人想像的更快發生。

試閱文字

導讀 : 導讀 一場沉默的改變正在發生

  一直以來人類的知識可以分為兩類:「明知識」和「默知識」(Tacit Knowledge,又稱隱性知識或內隱知識)。明知識就是那些可以用文字或公式清晰描述和表達出來的知識。默知識則是個人在感覺上能把握但無法清晰描述和表達的知識,也即我們常說的「只可意會,不可言傳」的那類知識。人類發明文字以來,積累的知識主要是明知識,因為只有明知識才可以記錄和傳播。直到大約70年前,人類才意識到默知識的存在。今天,人工智慧,特別是其中的一個重要流派──神經網路,突然發現了海量的、人類既無法感受又無法描述和表達的「暗知識」──隱藏在海量資料中的相關性,或者萬事萬物間的隱蔽關係。這些暗知識可以讓我們突然掌握不可思議的「魔力」,能夠做很多過去無法想像的事情。本書就是要清楚闡述機器學習發掘出了什麼樣的暗知識,為什麼機器能夠發現這些暗知識,以及這些暗知識對我們每個人會有什麼影響。
  本書分為三個部分。第一部分包括第一、二、三章,其中第一章裡我們發現AlphaGo(阿爾法圍棋)給我們帶來的最大震撼是人類完全無法理解機器關於下棋的知識。這個發現迫使我們重新審視人類對於「知識」的所有觀念。這一章回顧了2500年來人類所熟悉的明知識和直至大約70年前才注意到的默知識。近幾十年的腦神經科學的研究成果讓我們對知識的本質有了更清楚的認識, 也回答了為什麼人類既無法感受,也無法理解機器發現的那些暗知識。這一章還分析了明知識、默知識和暗知識之間的區別,討論了為什麼暗知識的總量將遠遠超過人類能掌握的所有知識。
  第二章介紹了機器是怎樣學習的,能學習哪些知識,同時介紹了機器學習的五大流派以及各流派從資料中挖掘知識的方法。
  第三章則重點介紹了目前機器學習中最火的神經網路,包括神經網路的基本工作原理和目前在商業上應用最廣的幾種形態,以及各自適用的領域。有了這些基礎就可以判斷AI(人工智慧)在各個行業的商業機會和風險。也只有理解了這些原理,才能真正理解暗知識的特點。為易於閱讀和照顧不同讀者的需求,在這一章中我們儘量用通俗的語言解釋這些工作原理,而把精確的技術原理介紹放在附錄裡。
  第二部分(第四、五章)討論了AI對商業的影響。我們將看到機器發掘出來的暗知識對我們生活的直接影響。對於想把握AI商業趨勢的讀者來說,這部分的內容至關重要。其中,第四章描述了當前的AI產業生態,第五章詳盡探討了哪些行業將面臨AI 的顛覆,以及在不同行業的投資機會和陷阱。
  第三部分(第六、七章)的內容是AI對未來和社會的影響。第六章重點討論目前還沒有商業化的,但可能更深刻影響我們的一些神奇的AI應用。第七章討論了機器和人的關係:機器能在多大程度上取代人的工作,會造成哪些社會問題(例如大面積失業)。
  這兩章的主要目的是開腦洞,探討那些我們今天可能還看不到的更深遠的影響。本章也試圖回答人類的終極恐懼:機器人最終會控制人類嗎? 本書的各個章節前後連貫,但也可以跳著讀,對於那些只對商業感興趣的讀者,可以跳過第二、三章直接讀第四、五章。
  筆者在美國史丹佛大學讀博士期間做過人工智慧研究,後來在矽谷和中國創辦高科技公司,目前在矽谷專注於投資人工智慧。每年訪問調研上千家矽谷和中國的科技公司,接觸頂級大學最前沿的研究,這些都有助於筆者從大量的實踐中提煉出自己對行業的原創的分析和洞見,而不是人云亦云。
筆者長期對人類如何獲得知識感興趣,在投資、研究和寫作AI的過程中,發現了暗知識這樣一個人類以往未曾發現的領域。這個概念的提出一定會引起爭議,筆者歡迎讀者的批評並期待在批評和討論中進一步深化在這方面的認識。
  本書的目標讀者是企業和政府工作人員及其他知識階層,包括學生。暗知識對人類的影響剛剛開始。從暗知識這個新視角出發,可以更深刻地理解這次AI巨浪。這波巨浪可能超過互聯網,許多行業都會深受影響。本書希望能回答「AI 對我的行業和職業會有什麼影響」。只有把AI的技術、趨勢和應用深入淺出地講清楚,讀者才可能舉一反三,理解AI對自己的影響。本書從筆者自己的投資實踐出發,希望能為在AI 時代進行投資提供一些參考。在AI颶風裡泥沙俱下,魚龍混雜,會有大量的炒作,讀完本書可以幫助讀者辨別真偽,不會被輕易唬住。在今後5到10年,不論是風險投資/私募股權投資還是在公開股票市場投資都需要有這樣的辨別能力。 
  本書最後在討論人工智慧對整個社會的影響時也提出了一些未經檢驗的建議。每當讀到市面上科技類的書籍時,常被那些含混不清的描述所困擾。當年在史丹佛大學上課時留下的最深印象就是那些學科的開山鼻祖對自己學科理解之深入。他們能用最簡單的方式把最深奧的道理講明白,讓聽課的學生一下子就能理解一門學科的核心概念,而且一輩子不會忘記。從那以後,筆者就堅信,如果學生沒聽懂,一定是老師沒講明白。這本書希望用最通俗易懂的語言介紹暗知識和AI。任何具有高中以上學歷的讀者如果有沒讀懂的地方,一定是因為筆者沒有寫明白。
  今天每個人都要面對海量的資訊和知識,如何讓讀者花最少的時間獲取最大量的資訊和知識成為一個挑戰。筆者最欣賞的文章和書籍是那些沒有一句多餘的話的,這也是筆者寫作本書的目標之一。本書希望能夠做到讀者在機場書店買了這本書後能在下飛機前讀完,而且讀完之後可以清晰地判斷這場技術大浪對自己的影響。
王維嘉 /2019 年1月13日,於矽谷

試閱文字

內文 : 天才的哽咽
  2016年3月15日, 美國谷歌公司的圍棋對弈程式Alpha Go以五局四勝的成績戰勝世界圍棋冠軍韓國選手李世石。一時間這個消息轟動世界,全世界有28億人在關注這場比賽,在中國更是引起極大的轟動。人們感覺AlphaGo就像從石頭縫裡蹦出來的孫悟空一樣,完全無法理解一台機器如何能夠打敗世界圍棋冠軍。圍棋歷來被認為是人類最複雜的遊戲之一。圍棋每一步的可能的走法大約有250種,下完一盤棋平均要走150步,這樣可能的走法有250150=10360種,而宇宙從誕生到現在才1017秒,即使是現在世界上最快的超級電腦,要想把所有走法走一遍,計算時間也要比宇宙年齡都長。即使排除了大部分不可能的走法也是大到無法計算。機器是怎樣學會這麼複雜的棋藝的?
  這場比賽後,世界排名第一的棋手柯潔在網上說:「AlphaGo勝得了李世石,勝不了我」。而2017年5月28日,棋手柯潔以0:3完敗AlphaGo,徹底擊碎了人類在這種複雜遊戲中的尊嚴。賽後,這位天才少年一度哽咽,在接受採訪時柯潔感歎,AlphaGo太完美,看不到任何勝利的希望。他流著眼淚說:「我們人類下了2000年圍棋,連門都沒入」。中國棋聖聶衛平更是把AlphaGo尊稱為「阿老師」,他說:「AlphaGo的著數讓我看得如醉如癡,圍棋是何等的深奧和神秘。AlphaGo 走的順序、時機掌握得非常好。它這個水準完全超越了人類,跟它挑戰下棋,只能是找死。我們應該讓阿老師來教我們下棋」。他還說:「阿老師至少是20段,簡直是圍棋上帝」。
  當人們以為這是對弈類程式的高峰時,AlphaGo的研發團隊Deep Mind(谷歌收購的人工智慧企業,位於倫敦) 團隊再度打破了人類的認知。2017年12月,Deep Mind團隊發佈了AlphaGo Zero。AlphaGo Zero使用了一種叫作「強化學習」的機器學習技術,它只使用了圍棋的基本規則,沒有使用人類的任何棋譜經驗,從零開始通過自我對弈,不斷地迭代升級,僅僅自我對弈3天後,AlphaGo Zero就以100:0完勝了此前擊敗世界冠軍李世石的AlphaGo Lee版本。自我對弈40天後,AlphaGo Zero變得更為強大,超過了此前擊敗當今圍棋第一人柯潔的AlphaGo Master(大師版),這台機器和訓練程式可以橫掃其他棋類。經過4個小時的訓練,打敗了最強國際象棋AI Stockfish,2個小時打敗了最強將棋(又稱為日本象棋)AI Elmo。
  AlphaGo Zero證明了即使在最具有挑戰性的某些領域,沒有人類以往的經驗或指導,不提供基本規則以外的任何領域的知識,僅使用強化學習,僅花費很少的訓練時間機器就能夠遠遠超越人類的水準。

既不可感受也不能表達的「暗知識」
  為了理解暗知識的本質,我們必須先搞清楚「知識」與我們今天常用的「資訊」和「資料」有什麼不同。稍加研究就能發現關於資訊、資料和知識的定義有很多並且非常混亂。筆者在下面給出一組符合資訊理論和腦神經科學研究結果的簡單而自洽的定義。資訊是事物可觀察的表徵, 或者說資訊是事物的外在表現,即那些可觀察到的表現。在我們沒有望遠鏡時,談論肉眼以外星空裡的資訊毫無意義。
  資料是已經描述出來的部分資訊。任何一個物體的訊息量都非常大,要想精確地完全描述一塊石頭,就要把這塊石頭裡所有基本粒子的狀態以及它們之間的關係都描述出來,還要把這塊石頭與周圍環境和物體的關係都描述出來。而關於這塊石頭的資料通常則少得多,例如它的形狀、重量、顏色和種類。
  知識則是資料在時空中的關係。知識可以是資料與時間的關係,資料與空間的關係。如果把時間和空間看作資料的一部分屬性,那麼所有的知識就都是資料之間的關係。這些關係表現為某種模式(或者說模式就是一組關係)。對模式的識別就是認知,識別出來的模式就是知識,用模式去預測就是知識的應用。開普勒的行星運動定律就是那些觀測到的資料中呈現的時空關係。牛頓定律的最大貢獻可能不在於解釋現有行星的運動,而在於發現了海王星。這些資料在時空中的關係只有在極少數的情況下才可以用簡潔美妙的數學方程式表達出來。在絕大多數情形下,知識表現為資料間的相關性的集合。這些相關性中只有極少數可以被感覺、被理解,絕大多數都在我們的感覺和理解能力之外。
  人類的理解能力由感受能力和表達能力組成。人類的感受能力有限,局限性來自兩個方面。一是只能感受部分外界資訊,例如人眼無法看到除可見光之外的大部分電磁波頻譜,更無法感受大量的物理、化學、生物和環境資訊。二是人類的感官經驗只局限在三維的物理空間和一維的時間。對高維的時空人類只能「降維」想像,用三維空間類比。對於資料間的關係,人類憑感覺只能把握一階的或線性的關係,因為地球的自轉是線性的,所以「時間」是線性的。例如當我們看到水管的水流進水桶裡時,水面的上升和時間的關係是線性的,我們憑感覺可以預測大概多長時間水桶會滿。人類感官對於二階以上的非線性關係就很難把握。例如當水桶的直徑增加1倍時,水桶能盛的水會增加4倍, 這點就和「直覺」不相符。
  人類的表達能力只限於那些清晰而簡單的關係,例如少數幾個變數之間的關係,或者是在數學上可以解析表達的關係(「解析表達」的意思就是變數之間的關係可以用一組方程式表達出來)。當資料中的變數增大時,或當資料間的關係是高階非線性時,絕大多數情況下這些關係無法用一組方程式描述。所以當資料無法被感受,它們之間的關係又無法用方程解析表達時,這些資料間的關係就掉入了人類感官和數學理解能力之外的暗知識大海。
我們現在可以回答「一個人類無法理解的暗知識的表現形式是什麼樣的」,暗知識在今天的主要表現形式類似AlphaGo Zero裡面的「神經網路」的全部參數。在第三章詳細介紹神經網路之前,我們暫時把這個神經網路看成一個有許多旋鈕的黑盒子。這個黑盒子可以接收資訊,可以輸出結果。黑盒子可以表達為一個一般的數學函數:Y=fw(X)。這裡Y是輸出結果,fw(X)是黑盒子本身,X是輸入資訊,w是參數集,就是那些旋鈕,也就是暗知識。

AI與互聯網的三個區別
  這次AI創新浪潮堪比互聯網,但是AI浪潮和互聯網浪潮有三個區別。
  第一個區別是AI從一開始就要顛覆傳統行業。互聯網1994年起步時從經濟的邊緣開始,和傳統產業似乎一點關係都沒有,沒有人懂一個網站能幹什麼。互聯網20多年來逐步從邊緣蠶食中心,直至今日影響每個行業。但即使是今天,互聯網對製造業、農業、建築業、交通運輸等搬運原子的行業的影響也局限在媒體和行銷方面,沒有進入製造業的核心。而AI的特點是從第一天起就從傳統產業中心爆炸,自動駕駛對汽車行業的顛覆就是一個典型的例子。
  第二個區別是技術驅動。互聯網除了搜索以外基本沒有太多技術,主要是應用和商業模式。互聯網創業者完全可以是不懂技術的人。目前為止AI創業者以技術大拿居多。當然隨著AI技術的普及,許多有商業頭腦的人只要看明白AI在一個行業的價值也可以拉起一家公司,但目前最稀缺的是AI的高級技術人才。
  第三個區別是可能不會出現平臺性公司或贏家「通吃」的局面。互聯網的一個特點是連接供需雙方,一旦用戶超過一個門限,後來者就很難趕上,所以很容易形成贏家「通吃」的局面。但在AI 產業裡目前還沒有看到這樣的機會,不論是自動駕駛還是人臉識別都是一個一個山頭去攻,無法在短期內形成壟斷。造成融資泡沫的一個重要原因就是有些投資人還以為AI和互聯網一樣贏家「通吃」:只要投中第一名,多貴都值。
  簡單用一句話說就是互聯網是to C(對用戶)的生意, AI是to B(對企業)的生意。AI中to C的生意都會被現有互聯網巨頭吸納,創業者的機會在於to B。

自動駕駛顛覆移動──10萬億美元的產業
  人工智慧未來十年最大的市場之一,就是通過自動駕駛徹底顛覆汽車的製造、銷售、本地出行和物流行業。
  如果讓機器開車,機器就要和人一樣能做四件事:第一,感知:離車100米處是一輛大卡車還是行人天橋。第二,判斷:馬路邊站的人是要搶在我的車前衝過去還是在等我的車先開過去。第三,規劃:什麼時機擠進邊上的車流中去。第四,控制:為了實現規劃,如何控制方向盤的角度和車速。以上四點除了控制是成熟技術以外,其他三點都還在反曲點上。
  第一個重要的感測器就是監控攝影機。監控攝影機由於受到像素的限制,只能看清前面幾十米,但也能分辨不同的物體。監控攝影機還能夠做到其他所有感測器都做不到的:識別交通標誌。監控攝影機是目前最成熟的感測器, 也是最便宜的感測器。但是從監控攝影機裡識別物體和標誌並不容易。監控攝影機的弱點是看不遠,尤其是遇到雨、雪、霧霾天氣時,監控攝影機就不行了。能夠彌補監控攝影機弱點的另一個傳感器是毫米波雷達。毫米波雷達可以看清200~300米甚至更遠的距離,不受日光和天氣影響,還能精確測量物體的距離和速度。
  但現有的毫米波雷達的空間解析度很低,也就是雖然知道200米處有一個物體在以每小時50公里的速度移動,但弄不清是摩托車還是汽車。如果結合雷達和監控攝影機的資料,就可以更準確地檢測和跟蹤目標。當一個物體在距離200米處時,該物體在監控攝影機裡還是一個黑點, 但是可以根據相應的雷達資料獲得該物體的距離和移動速度。等物體稍微近點,監控攝影機就可以看清這個時速為50公里米的物體是一輛摩托車。監控攝影機+毫米波雷達是半自動和自動駕駛車輛最基本的配置(少了任何一個都不行),也是目前(2018年)特斯拉所有車型的標準配置。
  傳統毫米波雷達的主要問題是空間解析度太低。解決這個問題有兩種辦法。一種辦法是將單一天線變成一組天線(4個、8個、16個等),天線越多,多個天線合成的空間解析度就越高,但是天線多體積也隨之變大,不容易安裝。另外一種辦法是利用汽車移動或信號變化做出「適應型陣列天線」。後者對技術要求很高,必須建立在對雷達成像的深度理解之上,並且需要許多年的設計經驗。美國的Oculii公司已經研發出77GHz的高解析度點雲成像雷達。圖5.2 就是這個雷達產生的點雲資料,已經和市面上的中低精度光學雷達可比。如果毫米波雷達能夠達到高解析度, 一輛自動駕駛汽車只要監控攝影機和毫米波雷達就足夠了。

醫療與健康世界上最有經驗的醫生
  醫療健康是AI最熱門的應用領域之一,醫療行業有太多的方面可以借助AI得到質的提升。據追蹤風險投資動態的資料公司CB Insights的資料顯示,從2012年至2017年7月,醫療行業有270筆投資交易。語音辨識、影像視別技術、深度學習技術已經和醫療行業快速融合,在輔助診療、醫學影像、藥品研發、數字健康、疾病預測、虛擬護士等領域應用,提升藥品的研發速度、醫生的診斷醫治效率、患者的健康管理等。醫療資料目前較為分散,這給不少創業公司提供了從垂直領域切入的機遇。
  AI在醫療健康領域的第一個重要的應用是醫學影像診斷。2016年11月,美國FDA(食品藥品監督管理局)頒發了第一個醫療AI軟體平臺的許可。這個軟體平臺是史丹佛大學校友創辦的Arterys心臟核磁共振成像診斷平臺。這個平臺用1000 個已知圖像對模型進行了訓練。心臟可以分為17個部分,通過這17個部分的影像可以判斷心臟是否有問題。要通過FDA批准,這個平臺的判斷至少要和專業醫生一樣準確, 這個平臺可以在15秒內做出判斷,而有經驗的醫生通常需要半小時到一小時,比醫生快了200倍左右。
  我們知道癌症早期發現的治癒率遠遠高於中晚期。如果發現得早,那麼五年存活率可以達到97%,但如果在最晚期發現,那麼五年存活率只有14%。如何讓那些不方便看皮膚科醫生的人能夠最早發現病情就成為關鍵。美國每年有540萬例皮膚癌,2017年初,史丹佛大學AI實驗室的Thrun(特龍)教授的博士生開發出了一個可以診斷皮膚癌的AI演算法。他們用已經認證過的370張含有惡性皮膚癌和惡性黑色素瘤的圖片讓演算法和21位皮膚科醫生的判斷相比較,演算法在各方面都達到了和醫生相同的判斷准確度。
  中國是全球肺癌死亡率和發病率最高的國家。僅2015年中國就有429.2萬新生腫瘤病例和281.4萬死亡病例,肺癌是發病率最高的腫瘤,也是癌症死因首。2015 年中國新生47.7萬例食道癌,占全球的50%。新增肺癌病例73.33萬,占全球的35.8%,中晚期占70%。目前最有效的手段就是每年體檢,早期診斷和早期治療能將患者的五年生存率提高到80%以上。
  肺癌早期發現的難點主要是:早期肺癌多表現為肺部結節。它們尺寸小,對比度低,非常容易跟其他的組織部位混淆,患者的CT掃描數量通常超過200 層,人工閱片耗時耗力。騰訊公司推出的「騰訊覓影」技術,利用多尺度3D 卷積神經網路實現肺部圖像的3D分割與重建,結合金標準(指目前臨床醫學界公認的診斷疾病的最可靠、最準確、最好的診斷方法)病理診斷資料和大量醫生標註的結節位置資訊,3~10mm肺結節檢測準確率達到95%,肺癌識別率已經達到80%,並且還能通過增強圖像與放大圖像輔助醫生查看。目前,該技術已經與數家三甲醫院(三級甲等醫院簡稱三甲醫院,是中國對醫院按照《醫院分級管理辦法》實行「三級六等」的等級劃分中最高等級的醫院)進行合作。該類技術的逐步商用可望大幅降低癌症患者的發現率和死亡率。

智能時代萬物皆媒,人機協作時代已經來臨
  人工智慧正在徹底重塑媒體產業,線索、策劃、採訪、生產、分發、回饋等全新聞鏈路都因為人工智慧的到來而發生變革,媒體也正在走向智媒時代。人工智慧不僅能夠幫助媒體從業者更快地發現線索,輔助或自主生產新聞,並能根據每個受眾的喜好有針對性地發送新聞,同時它能為商家匹配更精準的廣告,讓媒體更好地實現商業化。
  目前的自動化寫作已經得到較廣泛的應用,最初多以財經和體育新聞的快訊、短訊及財報為主,因為這些報導一般能夠較好地拿到結構化的資料。隨著技術的發展,自動化寫作機器人的能力開始涵蓋了選題、寫稿、校對等全方位的功能,題材也拓展到災難、犯罪、選舉等領域。而且花費的時間更少,還能夠定製內容。
  美聯社是自動化新聞最早的探索者之一。2013年夏天,美聯社的新聞部門負責人提出一個在當時看來略顯激進的想法引入人工智慧進行自動化新聞創作。幾個月後,在Automated Insights(研究新聞自動生成的技術公司,位於美國北卡羅萊納州)的技術支持下,美聯社獲得了通過機器自動生產新聞的能力,從體育新聞簡報起步,在2014年開始使用演算法自動生成財報報導。美聯社當時估計這個做法能釋放記者20%的時間,可以讓這些記者從事更為複雜和關鍵的工作。2015年,美聯社制定了一個五年(2015-2020年)戰略規劃。美聯社戰略及企業發展部高級副總裁Jim Kennedy(吉姆.甘迺迪)希望在2020年之前,美聯社80%的新聞內容生產都能實現自動化。美聯社全球商業編輯Lisa Gibbs(莉莎.吉布斯)說:「經由自動化,美聯社向客戶提供的公司財報發佈報導是以前的12 倍,其中包括許多從未受到什麼過關注的非常小的公司。利用這些釋放出來的時間,美聯社記者可以參與更多使用者產生的內容,製作多媒體報導,追蹤調查報導,並專注於更複雜的新聞」。