Deep Learning深度學習基礎: 設計下一代人工智慧演算法 | 誠品線上

Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms

作者 Nikhil Buduma
出版社 聯合發行股份有限公司
商品描述 Deep Learning深度學習基礎: 設計下一代人工智慧演算法:深度學習(DeepLearning)如今已成為非常活躍的研究領域,同時也為現代機器學習鋪展了一條康莊大道。本書提供許多

內容簡介

內容簡介 深度學習(Deep Learning)如今已成為非常活躍的研究領域,同時也為現代機器學習鋪展了一條康莊大道。本書提供許多範例與清楚的說明,引導讀者進一步了解這個複雜領域中的一些主要概念。包括Google、微軟和Facebook這樣的業界龍頭,全都在其內部積極發展深度學習團隊。不過對於一般人來說,深度學習仍舊是個相當複雜而困難的主題。如果您熟悉Python,並具備微積分的背景知識,加上對於機器學習的基本理解,本書即可幫助您入門。●瞭解機器學習和神經網路的基礎知識●瞭解如何訓練正向饋送神經網路●用TensorFlow實現你的第一個神經網路●網路越來越深度時,相關問題的管理●建立能夠分析複雜圖片的神經網路●使用自動編碼器進行有效的降維操作●深入序列分析以處理自然語言●瞭解強化學習的基礎知識

作者介紹

作者介紹 ■作者簡介Nikhil BudumaNick Locascio是一位深度學習顧問、作家和研究人員,在Regina Barzilay實驗室從事自然語言處理(NLP)與電腦視覺方面的研究,並取得了學士與工程碩士的學位。他曾做過的專案,包括訓練神經網路使之能夠根據自然語言提示編寫程式碼,以及與MGH放射科合作應用深度學習協助臨床篩查乳房X光相片。Nick的研究成果,曾獲得MIT新聞和CNBC的報導。Nick也為財富500大企業提供深度學習的私人諮詢服務。他還參與創立了具有里程碑意義的MIT課程6.S191「深度學習簡介」,向300名學生、博士後與教授講授相關內容。Nikhil Buduma是Remedy的聯合創始人兼首席科學家,主要工作是構建一個以資料驅動為基礎的醫療保健新系統。16歲時,他在聖荷西州立大學設立了藥物探索實驗室,並為資源受限社區開發了一些低成本的新型篩查方法。19歲時,他曾兩度於國際生物奧林匹克競賽中獲得金牌。後來他就讀麻省理工學院,專注於開發大型數據系統,對醫療保健、心理健康、醫學研究等各方面都有一定的影響。他在麻省理工學院也共同參與創立了「Lean On Me」,這是一個全國性的非營利組織,主要是以匿名文字熱線的方式,在大學校園中提供有效的同伴支援,並利用數據促進積極正面的心理健康成果。Nikhil透過他的風險投資基金Q Venture Partners投資一些具有高技術與數據相關的公司,並為密爾瓦基釀酒人棒球隊管理一個數據分析團隊。 ■譯者簡介藍子軒

產品目錄

產品目錄 第1章 神經網路第2章 訓練正向饋送神經網路第3章 運用TensorFlow 實現神經網路第4章 超越梯度遞減第5章 卷積神經網路第6章 嵌入和表達方式的學習第7章 序列分析模型第8章 記憶強化神經網路第9章 深度強化學習

商品規格

書名 / Deep Learning深度學習基礎: 設計下一代人工智慧演算法
作者 / Nikhil Buduma
簡介 / Deep Learning深度學習基礎: 設計下一代人工智慧演算法:深度學習(DeepLearning)如今已成為非常活躍的研究領域,同時也為現代機器學習鋪展了一條康莊大道。本書提供許多
出版社 / 聯合發行股份有限公司
ISBN13 / 9789864768240
ISBN10 / 9864768247
EAN / 9789864768240
誠品26碼 / 2681596418004
頁數 / 304
注音版 /
裝訂 / P:平裝
語言 / 1:中文 繁體
尺寸 / 23X18.5CM
級別 / N:無

試閱文字

自序 : 21世紀初,神經網路再次受到關注,其中「深度學習(Deep Learning)」已成為非常活躍的研究領域,同時也為現代機器學習鋪展了一條康莊大道。本書將透過解說和實例,協助你理解這個複雜領域的一些主要概念。事實上,包括Google、微軟和Facebook 等大公司,很早就開始關注這個領域的發展,而且這些公司內部的深度學習團隊也一直在積極擴展。對於我們這些其他人來說,深度學習仍是個相當複雜而困難的主題。一般研究論文總是充斥各種專業術語和行話;如果想瞭解深度學習如何解決問題及其原理,網路上分散各處的線上教程似乎也沒什麼幫助。因此,我們的目標就是希望能消除這其中的落差。

預備知識與目標讀者
本書設定的目標讀者,對微積分、矩陣和Python 程式設計都應該要有基本的理解。如果缺乏這些背景就想閱讀本書,雖然並非不可能,但肯定很有挑戰性。如果讀者具備線性代數的背景知識,對於本書某些數學相關章節也很有幫助。
讀完本書之後,我們希望讀者能在以下幾個方面,留下具體而直接的認知:運用深度學習來解決問題的做法、現代深度學習方法的歷史背景、熟悉如何使用TensorFlow 開源函式庫實現深度學習演算法。

試閱文字

內文 : 這次翻譯本書非常開心,收獲出乎意料的多。
首先第一大功勞,一定要感謝?峰資訊選中此書,還給了非常充足的時間!!在如此充裕的條件下,身為譯者的我除了完成譯稿之外,還額外完成了好幾件重要的工作。^_^
首先是我在這次的翻譯工作中,結合Google

譯者工具包,打造了一個翻譯輔助外掛系統,這個系統大大提昇了翻譯的速度與品質。過去我曾使用過好幾種翻譯輔助系統(像是Trados、OmegaT、雅信、雪人、輕敲互動翻譯、TermSoup⋯等,當然還有Google譯者工具包本身),或多或少都有一些不順手的地方。我一直想做個自己用起來順手的工具,但平時沒在翻譯就提不起勁,翻譯期間又往往沒有餘裕,這次好不容易有了充裕的時間,一開始我便花了些心思打造系統,後來邊翻譯邊改系統,越用越順手,到翻譯完成時系統也達到了一定的成熟度,心裡著實感到特別高興。

另一個收獲,就是這本書的內容,對於我很感興趣的自然語言有許多著墨。雖然當初並沒有抱著很高的期望,但實際翻譯後發現書中介紹的許多主題(尤其第六、七章的序列分析、詞性分析、SyntaxNet、情緒分析、機器翻譯⋯)正是我急切想要了解的內容!!當初Google

開放相關原始碼時,我想進一步了解卻還是感到煩惱,就是因為如果直接去讀那些程式碼,相應說明不足的情況下恐怕非常吃力,沒想到這本書做了相當深入淺出的介紹,我甚至可以循著書中許多思路,進一步改善前面所提到的翻譯輔助系統!
這真是太神奇了,傑克⋯⋯^_^

活動