Math Without Numbers
作者 | Milo Beckman |
---|---|
出版社 | 英屬蓋曼群島商家庭傳媒股份有限公司城邦分公司 |
商品描述 | 不用數字的數學: 讓我們談談數學的概念, 一些你從沒想過的事......激發無窮的想像力!:當數學裡沒有數字,會發生什麼事?——沒有練習題,沒有標準答案,剩下的是發現、探 |
作者 | Milo Beckman |
---|---|
出版社 | 英屬蓋曼群島商家庭傳媒股份有限公司城邦分公司 |
商品描述 | 不用數字的數學: 讓我們談談數學的概念, 一些你從沒想過的事......激發無窮的想像力!:當數學裡沒有數字,會發生什麼事?——沒有練習題,沒有標準答案,剩下的是發現、探 |
內容簡介 當數學裡沒有數字,會發生什麼事? ——沒有練習題,沒有標準答案,剩下的是發現、探索、推論,以及解謎的樂趣! 這本書除了頁碼之外,完全沒有數字,同時還有100多幅由紐約當地藝術家M手繪的插圖。作者利用文字和圖像來傳達重要的數學概念的感覺,並省去了公式和計算。 雖然沒有數字,但這本書對於數學是什麼?數學涵蓋哪些部分?最有趣的地方在哪裡?這些探索是絕不打折,而且能讓您對於數學,有更廣闊的了解。 例如,有什麼東西比「無限大」更大嗎?世界上總共有多少種形狀?現實生活中什麼時候會用得上這些?這些問題其實都有答案,但答案都不是數字。 從本書一開始,作者帶領我們進入一個奇妙的「現實平面」。在這個平面上,正方形是圓形、賽局是樹,自然世界則是電腦模擬。對於學過九九乘法之後就不再關注數學的人而言,數學真的是抽象怪異到了極點!但是,數學為什麼還那麼有用呢? 這本書寫來生動活潑,而且極富原創性,它帶領我們認識抽象數學的三大分支:拓樸學、分析和代數,把這三個領域解釋得很清晰而有趣。作者說,其實關鍵就是掌握模式。這本書一反傳統的教學方式,邀請讀者運用創意,來思考空間和維度、無限大和無限小、對稱、證明、結構,以及這些概念如何結合在一起,最後,將這些概念應用在日常生活中! 歡迎來到人類知識的最前沿,體驗數學的美麗與奧祕。 專業推薦 李政憲,新北市林口國中老師 洪萬生,臺灣數學史教育學會理事長 游森棚,臺灣師範大學數學系教授 我要大力推薦這本書!有鑑於拓樸學、量子力學以及相對論極有可能成為本世紀下半葉的公民基礎素養,我尤其希望有語文閱讀自信的讀者,一定要特別注意這一類數學普及書籍的問世,因為這攸關公民科學素養的必要選項。 ——洪萬生,臺灣數學史教育學會理事長 這是一本非常特別的數學科普書!我欣見這本書的出版,也佩服作者的宏觀與有趣的文筆,把數學某些本質層面藉由適當的選材呈現出來。本書的視野和高度在數學科普書中是非常少見的,足以讓讀者對數學有完全不同的認識與體悟。 ——游森棚,臺灣師範大學數學系教授 什麼?學數學可以不用數字?!作者深入淺出,以圖文介紹了許多看似難懂的數學名詞,以及這些概念與生活、遊戲與哲學等面向的連結,若你覺得不知道數學有何用處,或是有興趣想研究更多數學面向,這本書值得一讀。 ——李政憲,新北市林口國中老師、藝數摺學FB社團創辦人、教育部師鐸獎得主 《不用數字的數學》以迷人的魅力、堅定的熱情和大量插圖,帶領讀者進入高等數學的花園。 ——喬登.艾倫伯格(Jordan Ellenberg),威斯康辛大學麥迪遜分校數學教授、《數學教你不犯錯》作者 就像在跟你聊天一樣,這是一場愉悅、迷人的數學世界之旅,還有它與現實世界的關係——而且看不到一個數字!每個人都該讀讀這本有趣的書,數學家也是。 ——伊恩.史都華(Ian Stewart),英國華威大學數學教授、《改變世界的17個方程式》作者 《不用數字的數學》探討深奧的數學主題,呈現數學家的思考方式,再以十分淺顯易懂的方式傳達給讀者。謎題和遊戲更增添本書的趣味性,讀來十分愉快。 ——威爾.舒爾茲(Will Shortz),《紐約時報》填字遊戲編輯 淺顯易懂地引介一般大眾不熟悉的概念,說明現代數學為何是人類思想中最迷人且最具成就感的領域。 ——格拉漢.法梅洛(Graham Farmelo),《The Universe Speaks in Numbers》作者 本書文句淺顯,又有插圖輔助,讓了解複雜(而且讓人望而生畏)的數學概念變得異常容易。貝克曼輕鬆的筆調和Erazo可愛的插圖相輔相成,娓娓道來深刻又有趣的數學故事。 ——喬琪亞.盧比(Giorgia Lupi)和史蒂芬妮.波薩維克(Stefanie Posavec),《Dear Data》及《Observe, Collect, Draw!》共同作者 非常可愛的一本書!數學好玩、令人驚奇又迷人,但這些特質往往被嚇人的方程式和形式主義掩蓋。米羅‧貝克曼徹底揭露數學的迷人之處,讓大家體驗。 ——蕭恩.卡羅爾(Sean Carroll),加州理工學院物理教授、《Something Deeply Hidden》作者 本書完整呈現數學的有趣之處,同時避開令人生畏的技術細節。我的書架上又多了一本好書。 ——謝里夫.傑克森(Shareef Jackson),STEM多樣性倡議者
作者介紹 米羅‧貝克曼1995年出生於紐約曼哈頓。他從小就對數學非常著迷,8歲開始在史岱文森(Stuyvesant)高中上數學課,13歲時擔任紐約市數學小組組長,15歲進入哈佛大學。他的研究計畫和獨立研究相當多樣化,曾經被《紐約時報》、538網站、《早安美國》節目、《沙龍》網站、《赫芬頓郵報》、《高等教育紀事報》、《商業內幕》、《波士頓環球報》、《高譚派》(Gothamist)網站、《經濟學人》等媒體報導。他曾為三家科技公司、兩家銀行和一位美國參議員工作,19歲時退休,開始在紐約、中國和巴西教授數學,並開始撰寫這本書。他目前住在布魯克林。他的網站milobeckman.com推特:milobelaEmulsifyM是皮膚黝黑的非二元性別文化工作者及組織者。他以「乳化」(Emulsify)為名創作,協助自己治療、學習、提倡和想像新的世界。他相信所有的藝術都強而有力又具有政治意義。M和太太居住在布魯克林,投入很多時間創作和抱小狗。M的創作能量和愛只是其生活的一部分:他也是支持墮胎的工作者、乳化設計公司創辦人,以及酷兒跨性別黑人與深色人種社群空間「歡天喜地」(Arrebato)的創意總監。M透過作品建立真摯的友誼,向優秀的同儕學習,以及為他們尋找容身之處。想進一步了解M的作品,請參閱網站emulsify.art。甘錫安物理系學業結束後轉職成為「譯人」。曾獲得吳大猷科普著作獎翻譯類佳作,現仍定期為《科學人》、《BBC知識》及《國家地理》等知識類雜誌翻譯。書籍譯作包括《喚醒大腦裡的數學家》、《成分迷思》、《天生不愛動》、《巫師與先知》等。在吸收新知和翻譯之外,最愛的休閒活動是旅行、攝影和水上活動。目前住在有山有海有美食的台灣頭基隆,最大的心願是知識普及、人人快樂。
產品目錄 推薦序 一窺當代抽象數學的面向 游森棚 推薦序 不用數字,數學也可以非常有趣! 洪萬生 拓樸學 形狀 流形 維度 分析 無窮 連續體 映射 代數 抽象 結構 推論 基礎 對話錄 建模 模型 自動機 科學 繪圖者簡介
書名 / | 不用數字的數學: 讓我們談談數學的概念, 一些你從沒想過的事......激發無窮的想像力! |
---|---|
作者 / | Milo Beckman |
簡介 / | 不用數字的數學: 讓我們談談數學的概念, 一些你從沒想過的事......激發無窮的想像力!:當數學裡沒有數字,會發生什麼事?——沒有練習題,沒有標準答案,剩下的是發現、探 |
出版社 / | 英屬蓋曼群島商家庭傳媒股份有限公司城邦分公司 |
ISBN13 / | 9786267195017 |
ISBN10 / | 6267195015 |
EAN / | 9786267195017 |
誠品26碼 / | 2682242479004 |
頁數 / | 224 |
開數 / | 菊16K |
注音版 / | 否 |
裝訂 / | P:平裝 |
語言 / | 1:中文 繁體 |
尺寸 / | 21X14.8X1.5CM |
級別 / | N:無 |
推薦序 : 一窺當代抽象數學的面向
游森棚
(臺灣師範大學數學系教授)
讀者手上的書是一本非常特別的數學科普書。
這本書談的數學,會和絕大部分讀者心中的「數學」非常不一樣,也和絕大部分的數學科普書非常不一樣。一言以蔽之,這本書用淺顯的語言介紹現代高等數學中幾個抽象的核心領域:拓樸、分析、代數,最後提及數學的哲學基礎、建模與自動機。所有篇章都談「概念」,都沒有「數字」。
這是數學嗎?!
讀完初稿,不禁啞然失笑,回憶起自己年輕時在數學系的惶恐與不知所措。僅僅一個月我就發現大學的數學和高中數學「很不一樣」。高中數學範圍有限,目標是解設計好的題目:不要有計算失誤,快速地解題得到正確的答案。但是大學的數學範圍茫茫無際,大一的微積分(Calculus)與線性代數(Linear Algebra),除了像高中數學一樣的計算與解題,更多的是要求理解與論證。我在這兩門課的證明題中掙扎前行,不知不覺進了大二。
然後我就在大二的高等微積分(Analysis)與代數學(Algebra)卡關了。這兩門課是數學系真正的入門課程,幾乎沒有像高中數學一樣的計算題,而是一整片的理論。前面沒弄懂,後面就根本無法前進。簡單來說,這兩門課從課本內容、習題、到考試,全部是證明題。我可以整個下午在書桌前,只為了想弄懂從這一行到下一行的理由。一道敘述只有十幾個字的習題,可以耗掉好幾天,而且還做不出來,更糟的是書後面還沒有答案。同學們互相自嘲,一本薄薄的課本可以讀這麼久,真的太划算了。
我原以為這兩門課已經嘆為觀止,但到了大三時,修了一門更誇張的課,叫做拓樸學(Topology)。幾百頁的課本中沒有任何數字(數字只出現在頁碼、定理標號、足碼)。每星期連續幾堂課老師寫滿七、八個滿滿的黑板,可以完全不出現任何一個數字。我們一路顛簸,掙扎忍耐到快要學期末,然後老師很興奮地預告,下學期,在書本的後半,我們將會證明Jordan Curve Theorem這個大定理:這個定理是說,你拿筆在紙上畫一個圓,會把紙分成兩部分,「圓內」和「圓外」。台下同學一片譁然,這能不譁然嗎!我簡直矇了,那一瞬間, 我覺得我在外星球上……
這是數學嗎?!
數學研究什麼
是的,這是數學。經過大學數學系,我知道從定義出發,純粹的論證與推理,推出夠一般的結論,是數學理論發展的步驟。而論證與推理,才是數學的核心本質。數學和其他學門非常不同,數學是一步推一步的,要下結論必須要有理由。「論證」與「推理」在數學各個不同的主題或領域上所佔的份量不盡相同,但這個本質不會改變。即使是小學的九九乘法表,三七是二十一也是有理由的。
如果我們抽離出最根本的概念,數學就是在研究形狀,研究變化,研究結構,應用之以解決實際問題,資訊時代又賦予數學新的觀點與力量。
用數學專業的語言來說,數學研究形狀,就是「幾何學與拓樸學」;數學研究變化,就是「分析學」;數學研究結構,就是「代數學」;數學解決實際問題,就是「應用數學」;數學與資訊結合,就是「離散數學」。這幾個領域,就是當代數學這棵參天大樹的幾個主幹。
作者的野心
這正是本書的內容。這本書的五個章節中,第一章是拓樸學(形狀),第二章是分析(變化),第三章是代數(結構),第五章是建模(應用數學與離散數學)。數學既然是一步推一步,根基是否穩固就很關鍵,這個部分穿插在第四章的基礎(數學基礎與數學哲學)。
由此可看到作者的野心非常宏大——他想要在一本小書中一網打盡介紹數學的各個主幹。這當然是不可能的,因此本書作者相當努力,在每一章中,盡量選取那些可以用口語解釋概念的主題材料。在解釋的過程中,盡可能貼近讀者的生活經驗,或是藉由各式各樣生活上的例子來讓讀者體會數學的概念。
要對一般讀者講解抽象的高等數學,細節與精確定義是不可能講清楚的。但是既然只抽離出概念,還是有機會在概念上讓讀者體會的。一個簡單的例子如下:三角形、橢圓、長方形、叉叉,這四個東西哪一個「看起來跟別人最不一樣」?很顯然就是叉叉,這個小朋友都能做。但這樣的直覺,就已經碰觸到拓樸學中的核心概念了,這正是本書第一章的第一部分要介紹的內容。所以很容易理解吧!讀者如果想學嚇人的專業術語,我來註解如下:三角形、橢圓、長方形是同胚的(homeomorphic),但是叉叉和它們不同胚。
書中有些材料作者介紹得非常精妙,即使以我專業數學家的眼光來看,都覺得眼睛一亮,比如對稱群、自動機、物理基本粒子等等。既然作者原來的想法就是用口語敘述介紹高層次的概念,讀者就不要有壓力,當作有趣的故事書來讀,會有驚喜的發現:重複圖案的壁紙本質上只有十七種、數學中不同的主義、連續與離散真的天差地遠……
未盡之言
最後再回到讓全班譁然的Jordan Curve Theorem。到了研究所後我才知道為什麼這個定理這麼特別——這是平面獨有的一個特別性質。到了三維空間中的流形(manifold)事情就變得非常複雜,讀者可以查「Alexander horned sphere」看看有多詭異。至於什麼是「維度」和「流形」,可以看這本書的第一章……
我欣見這本書的出版,也佩服作者的宏觀與有趣的文筆,把數學某些本質層面藉由適當的選材呈現出來。但數學何其浩瀚,不管是哪個主幹,本書提及的材料都還只是很小的部分,茫茫數學大海,還有非常多新奇的事物。但囿於篇幅與主題限制,許多重要的領域本書沒有碰觸,是較為可惜之處。但這是我太苛求了,本書的視野和高度在數學科普書中是非常少見的,碰觸到的領域已經非常廣闊,足以讓讀者對數學有完全不同的認識與體悟。
無論如何,希望本書能開一扇門,引領有緣的讀者或未來的數學家,體會當代數學的面向,從而進入數學的嚴肅、深邃與美麗。
內文 : 形狀
數學家通常都想很多,這是我們的習性。我們會分析對稱或相等這類大家都知道的基本概念,試圖找出更深層的意義。
形狀就是一個例子。我們多少都知道形狀是什麼。我們看到一個物體時,很容易就看得出它是圓形、方形還是其他形狀。但數學家會問:形狀是什麼?構成形狀的要素是什麼?我們以形狀分辨物體時,會忽略它的大小、色彩、用途、年代、重量、誰把它拿來的,以及最後誰要負責歸位。我們沒有忽略的是什麼?當我們說某樣東西是圓形時,看到的是什麼呢?
當然,這些問題沒什麼意義。就實際用途而言,我們對形狀的直覺理解就已經夠了─生活中沒有什麼重大決定是需要仰賴我們對於「形狀」的確切定義。但如果你有空又願意花時間來想一想,形狀倒是個很有趣的主題。
假設我們現在要思考了,我們或許會問自己這個問題:
世界上有幾種形狀?
這個問題很簡單,但不容易回答。這個問題有個比較精確和有限的說法,稱為廣義龐卡赫猜想(generalized Poincaré conjecture,或譯龐加萊猜想)。這個猜想提出至今已經超過一百年,目前還沒有人解答出來。嘗試過的人相當多,有一位數學家解出這個問題的大部分,因此獲得了100萬美元獎金,但還有許多種形狀沒有找到,所以目前我們還不知道世界上一共有幾種形狀。
我們來試著解答這個問題。世界上有幾種形狀?如果沒有更好的點子,有個不錯的方法是畫出一些形狀,看看會有什麼結果。
看來這個問題的答案取決於我們區分形狀的方式。大圓和小圓是相同的形狀嗎?波浪線(squiggle)應該全部算成一大類,還是應該依彎曲的方式細分?我們需要一種通用規則來解決這類爭議,才不用每次都需要停下來爭論。
可用於決定兩個形狀是否相同的規則相當多。如果是木匠或工程師,通常會希望規則既嚴謹又精確:必須長度、角度和曲線都完全相等,兩個形狀才算相同。這樣的規則屬於幾何學(geometry)這個數學領域。在這個領域裡,形狀嚴格又精確,經常做的事情是畫垂直線和計算面積等等。
但我們的要求比較寬鬆一點。我們想要找出所有可能的形狀,但沒時間慢慢區分幾千種不同的波浪線。我們想要的是在比較兩個形狀是否相同時比較寬鬆的規則,它能夠把所有的形狀分成若干類別,但類別的數量又不至於太多。
新規則
如果一個形狀不需要剪剪貼貼,只要拉伸或擠壓就能變成另一個形狀,則這兩個形狀相同。
這個規則是拓樸學(topology)的核心概念,拓樸學就像是比較寬鬆模糊的幾何學。在拓樸學中,形狀以極薄且可無限延展的材料形成,像橡皮或麵團一樣,可以任意拉扯、扭轉和改變。在拓樸學中,形狀的大小並不重要。
此外,正方形和矩形相同,圓形也和橢圓形相同。
現在奇怪的事情來了!如果用這個「拉伸或擠壓」規則來思考,圓形和正方形也是相同的形狀!
先別急著告訴朋友,我們看到有一本書上說正方形是圓形!別忘了:背景前提很重要。在拓樸學中,正方形確實是圓形,但在藝術或建築、日常對話,甚至幾何學中,正方形當然不可能是圓形。如果有一輛自行車的輪子是正方形,這輛自行車一定騎不遠。
但現在我們研究的是拓樸學,研究拓樸學時,我們不用理會揉一揉就會消失的尖角這類小細節。我們會忽視長度和角度、直線邊或曲線邊或波浪邊等外表的差異,只看形狀的核心,也就是構成這個形狀的基本特徵。拓樸學家觀察正方形或圓形時,看到的是一個封閉迴圈,其他的都只是我們拉伸或擠壓它所形成的特徵。
這就像問:「項鍊是什麼形狀?」項鍊用某種方式拿著就是正方形,換一種方式又變成圓形。但不管我們怎麼改變,項鍊都有個不會改變的基本形狀,無論是正方形、圓形、八角形、心形、新月形、水滴形,或是七百一十六邊形。
這個形狀有許多不同的形式,所以不能稱為圓形或正方形。我們有時稱它為圓形,但在拓樸學說法中,這種形狀的正式名稱是S1。S1是項鍊、手鐲或橡皮筋、跑道或賽車場、護城河或國家邊界(假設沒有阿拉斯加)、字母O和大寫D的形狀,或是任何形狀的封閉迴圈。如同正方形是一種特定的矩形,這些形狀也都是特定的S1。
還有其他形狀嗎?如果這個拉伸和擠壓規則太過寬鬆,結果把許多不同的形狀通通歸成一個大類,這樣也不行。還好這個規則不會這樣,還是有其他種形狀和圓形不同。
例如線:
一條線可以彎成接近圓形,但是要變成真正的圓形,線的兩頭必須接在一起,但這樣不行。無論我們如何彎轉一條線,線的兩端一定各有一個點,形狀就到此為止,這兩個端點不能去除。我們可以任意移動和拉遠端點,但端點是這個形狀不變的特徵。
同樣地,「8」也是另一個不同的形狀。8沒有端點,但中間有個特殊的交叉點,這個點有四條線向外延伸,而其他點則只有兩條線往外。無論怎麼拉伸和擠壓,都不可能使這個交叉點消失。
仔細想想,這個資訊已經足以讓我們回答「世界上有幾種形狀?」這個問題。答案是無限多種,以下是我的證明:
證明
我們觀察一下這組形狀。如果在原本的形狀上畫一筆,就會生成新的形狀。
每個新形狀都比前一個形狀有更多的交叉點和端點,所以一定是不同的新形狀。如果一直添加下去,將會得到無限多個不同的形狀,因此形狀有無限多種。
故得證
這樣可以接受嗎?我們要做的只是找出這樣一組無限多種形狀,而且它顯然能永遠不停地生成新形狀。
最佳賣點 : 當數學裡沒有數字,會發生什麼事?
——沒有練習題,沒有標準答案,剩下的是發現、探索、推論,以及解謎的樂趣!